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1. INTRODUCTION

An important eng ineer ing problem which occurs  in many in t e r n a l  and
external  flow situations is laminar  to turbulent t r ans i t i on . A lthoug h the re
appears t o be a var iety of phys ica l  mechan i sms  which may lead t o b o u n d a r y
laye r t r ans it ion , only one is even partially unders tood in theore t ica l  t e r m s .
This mechanism, the g rowth of l inear Tol lmien-Schl icht ing waves  in a bound-
ary lay er , can lead to t r ans i t i on  as shown , for exam p le , b y the da ta  of

Kiebanoff , T ids t rom and Sargent 1
. The growt h of small  amp litude Tolimien-

Schlichting waves in a boundary layer is reasonab ly wel l  desc r ibed  by the
usual Or r -Sommer feld equation ; the recent work  of Bouthier 2 , Gas t er 3 , and
Saric and Nayfeh 4 improve s the agreement  by tak ing account of non pa r a l l e l

effects in the boundary layer. The data of Klebanoff , T id s t rom and Sargent
show that after the linear amplification of the Tollmien-Schlicht ing wa ve s ,
three-dimensional and nonlinear e ffects  become important , leadi ng to a

secondary instability and then transition ,

This report  descr ibes  the r esul ts  of numer ica l  calculat ions simila r to
the laboratory experiments of Kiebanoff , T ids t rom and Sar gent 1, except for
the fact that the calculations are confined to two space d imens ions . There
a re no other res t r ic t ions;  the d is turbance  need not be smal l  as no l ineariza-
t ion is per f or med , and the full equations are solved so the flow is automati-
cally nonparalle l . The numerical  computations are simila r to l abora to ry
expe riment s in that Tol]rr iien-Schlichting wave s of vary ing amp litudes a re

‘Kiebanoff , P.S., K . D . Tids t rom and L. M. Sargent , “ The T h r e e - D i m e n s i o n a l
Nature of Boundary Layer Instabi l i ty , ” J. Fluid Mech ., Vol . 12 , 1962 ,
pp. 1-34 .
2Bouthie r, Michel, ‘~Stabilit~ Lin~ aire des Ecoulement s Presque Pa ra lle le s , “
J. de M~canique, Vol. 11 , No. 4 , December 1972, pp. 599-621 and Vol. 12 ,
No. 1, March 1973 , pp. 75-95 .

3
Gaster, M., “On the Effects of Boundary-Laye r Growth on the Flow~Stability,

U
J. Fluid Mech., Vol. 66, 1974, pp. 4t5 ~ 480.4
Saric, W. S. and A . H. Nayfeh, Virg inia Polytechnic Inst i tute  and State Uni-
versity, “Non-Paralle l Stability of Boundary-Layer Flows, ~‘ 1975 , VPI-E-
75- 5.

-5 -
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propagated in a Blasius boundary layer . The fact that the ca lcula t ion  is two-

d imensiona l has the d isadvantage  that it cannot  predict  the t h r e e - d i m e n s i o n a l

da ta . On the othe r hand , it is advantageous to be able to invest i gate the non-

linear interact ions without the comp l ica t ions o f a th ird di m ensio n . It also

al lows qualitative comparisons  with nonl inear  stability theory (see S tewar tson 5

for a recent review of this subject) .  Th e c omparisons ca n onl y be qual i ta t ive

because the nonl inear  stability analyses  known to these authors  are  onl y for

paralle l flows (such as Couette flow) and are valid only in the vic ini ty  of the

cri t ical  Reynolds number .

Studies of boundary-layer stability simila r to the present  w o r k  have been
6 7  .

carried out by Fasel . His published work describe s solution s to the un-

steady Navie r -S tokes  equations in which the amp li tude of the d is turbance  is

small and , therefore , nonl inear e ffects  are unimportant . Howeve r , he has

ind icated in a private communication that he has also obtained solutions in

which nonl inear  e ffects  are  present  and found these solutions qualitative ly

similar  to the result s of Murdock 8.

This report  describes a portion of an extended numer ica l  stud y of

Blasius boundary laye r in the R eynold s numbe r rang e o f t ransi t ion . An

ear l ier  pape r by Murdo ck 8 g ives  a more detailed descr ip t ion of the formula-

tion , the assumpt ions and the nume rics as wel l  as some of the ear l y r e su l t s .

A ddi ti ona l numerica l r es u lts are p resen ted he r ein .

5Stewartson, K ., “Some Aspec ts  of Nonl inear  Stabilit y Theory ,  “ Polish
Academy of Sciences,  Vol . 7, 1975 , pp. 101-128 .
Fasel , He rmann  F ., “ Numer i ca l  Solution of the Uns tead y N a v i e r - S t o k e s
Equat ions  for the Invest i gation of Laminar  Boundary  Layer Stabil i ty,  I t

P roceedings  of the Fourth In ternat ional  Confe rence on Numer ica l  Methods in
F luid Dynamics,  Sp r i n g e r - V e r lag, Ber l in , 1974 , pp. 151-160 .
7
Fasel, Hermann F., “Investigation of the Stability of Boundary Layers by a
Finite-Difference Model of the Nav ie r -S tokes  Equat ions , ‘~ J. Fluid Mech.,
Vol . 78 , 1976 , pp. 355-383 .

8Murdock , John W ., “A N u m e r i c a l  Stud y of Non l inea r  E ffe cts on Boundary-
Laye r Stability,  “ ALA A 15th Aerospace  Sciences Meeting , Pape r 77- 127 ,
Submitted to the AIAA Journa l .

-6-
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2 . PROBLE M FORMULATION

The equations which are solved together with the boundary conditions
are given in this section for completeness .

The equations are solved in dimensionless parabolic coordi n ates ~
and 17, which are related to the dimensional Car t es ian coordinates , x and y,
as follows

~ = 

~ 1 ~~~~ (zR~~
)

~~
1/ 2 ] Z  ( 1)

where x 1 is a typical distance from the leading ed ge , and R is the Reynolds
number based on f rees t ream ve locity and x 1. The time is m~’ade di mension-
less with the free stream velocit y and with x 1

T = t U  /x . ( 2 )
~~~D 1

.e stream function and vort ic i ty  are the dependent  var iable s , and
un iension less vers ions  of these variable s are defined in term s of the dii-nen-
sional quant i t ies  P,i1 and W.

= (ZPU x 1) h / 2  
~f = (2UU ~~x j )~~’2 g (3)

= U~~~ U / (2 v x 1) ]~~~2 Q/ ~ ( 4 )

where V is the k inemat ic  v i s cos i ty .  The dependent  var iable  f reduces  to the
usua l Blasjus dimensionless stream function when the solution is not a func-
tion of ~ and T,

-7 -  
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The equations solved are a slightly simp lified version of the Navier-

Stokes equations referred to as the parabolized vorticity equations (see

Ref. 8).

Z~Q~ = Q
1717

/~ +g~Q /~ - g
17

(Q/~~~ + [ g /(2
~~2

R ) ]  
(5)

= g + g ~~~/(ZR ). (6)

The equation set is solved in the space

~ �~~~� (~. /R ~‘/~ (7)
\ X

2/ 
X
l!

0 � 7 7 � co (8)

Q � T  (9)

Th e equat ions ar e f ir st o rde r  in time and are  int eg ra t ed f rom a B lasius

initial condition at T = 0

g = 
“Blasius  (10)

The four boundary conditions in the 77-d imens ion  are

g = g 77 = 0 ;  1 7 = 0  ( 11)

g/~ = f = 77 -$
77 —. cX~ ( 12)

9 = 0

where is a constant character is t ic  of the disp lacement t h i cknes s .

-8-



The upst ream boundary conditions in are  a l inear  combinat ion of the

Blasius solution and a time per iodic  solution of the O r r - S o m m e r fe ld equa-

tion .

g = 
~Blas ius + A Re {Ø (77 ) e x p ( - i c~~~j

(1 3~
g~ ~B1asiu s - ZAaIm [Ø ( 77 ) exp ( - i&r) ]

where  ~ is the Or r -Sommer feld solut ion and A is some fixed amp li tude . The
real part of the dimensionless wave number , ~~~~~, and the rea l par t  of the di-
mens ionless f re quency , & , are def ined  in te r ms of the co r r e spond ing  dimen-
siona l quantities

= C~)x / U 
* ~ = ax (14)1 ~ 1

The third  o rde r  system in .~ r equ i r e s  onl y one downs t ream boundary
co ndi tion

~~~~ 0 (15 )

These equations are solved using a spect ra l  method in both space
dimens ions; a form of Cheb yshev  pol ynomial  expansion is used in each dimen-
sion. The so lut ion is up da t ed in t ime with an ex p li cit f ini te d i f fe rence scheme .

3. NUMERICA L RESULTS

In Ref. 8, the numerical resul ts  were  r e s t r i c t e d  to one case with the
emphas is  on a com pa r i s o n  of the small and large amp litude Tollmien-
Schlichting wave s . In this repo rt , the e a r l i e r  work  is extended to i n c l ud e :
( 1) calculati ons with addi t ion al phys ica l  pa r ame te r s  which show that the
resul ts  in Ref . 8 may be somewhat a ty pical , ( 2) calculat ions with a longer
st reamwise  reg ion i n o rde r  to bette r cha rac t e r i ze  the non l inear  b ehav io r ,
and (3 )  de ta i l s  o f the flow in the region where  the behav io r  is very  d i f f e r en t
f rom tha t  a s s u m e d  in nonl inear  s tab i l i ty  t heo ry  anal y ses .

-9-
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As an in t roduc t ion , cons ide r  th ree  re la ted f igure s t aken  f rom

Murdock 8. Th ese fi gure s dep ict cal cula t ions  in which a per iodic  Orr-

Sommerfe ld d i s tu rbance  is in t roduced  into the boundary  la ye r  at an x-

Reynolds  numbe r of 10~ with a d imens ion less  f r equency  g iven by

= ~ .ix LU = 13 . 19 (16 )
1 w

Figure 1 shows the normal ized  amp litude o f the per turbat ion ve locity well

down in the shear laye r at some time after  the Tollmien-Schl icht ing waves

ha ve propagated throug h the domain . The solid curve  co r respond ing  to a

sma ll amp litude d i s tu rbance  has , as expec t ed , a be havior  very  s imilar  to

a modu lated s inusoid . The dotted curve shows substant ia l  e f fec t s  of on-

li near  d i s to r t ion  and a small  change in wave speed . A s igni f icant  fe t u r e

of Fig. 1 is that the positive peak of the large amp li tud e wave is bul ged to

the ri ght upstream of R = 1. 7 x l0~ and bulged to the left fu r the r  down-

st ream.

It is difficult  to extract  i n fo rma t ion  f rom wave forms , such as those
shown in Fig. 1; therefore , these solutions have been Fourie r transformed

in time . The t ime Fourier  t r a n s f o r m e d  v er s i o n  o~ Fi g. 1 g iven  in Fig.  2

shows that the amp litude var ia t ion of the non l inea r  p r i m a r y  mode is not
changed ve ry much f rom its linear counterpar t . This behavior  is in agree-
ment with the usual nonlinear stabilit y theory.  U p t o a R eynold s n u m b e r  o f
about 1. 3 x 10~~, the growth rate of the nonl inear  wa ve (cons ider ing  the
energy in the f i r s t  two modes)  is grea te r than the growth rate of the l inear
wave. The possibility of this type of behavior is also contained in nonlinear

stability theory. Howeve r, the behavior  of the second mode beyond R =

1. 3 x 10~ was unexpected in that the amp li tu de f i r s t de~~avs and the n g rows
again , the minimum occur r ing  at about R = 1. 7 x 10~ . i’he minimum of the

second mode in Fig . 2 . occurs at about the same location as the chang e in
nonl inear  wave form in Fig. 1.

- 10- 
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A lthoug h the behavior in Figs.  1 and 2 is re la t ed , the change iii wave

shape in Fig. 1 cannot be exp la ine d on the basis  of Fourie r amp l itude a lone

but must also depend on the relati ve phase of the f ir s t  two modes . A c c or u i n g ly,

Fig. 3 shows the sine of the phase ang le of the f i r s t  two mode s as a func tion  of

Reynola~. nu mbe r f or the same condi t ions as Figs . 1 and 2. In nonl inear

stabi1i~y theory,  it is always assumed that the second tempora l  harmonic  is

also a se cond spatial harmonic.  If eve ry  othe r minimum of the dotted curve

in Fig . 3 coinc ided with the minimums of the solid curve , then the dotted

curve in Fig. 3 would be a spatial harmonic of the solid one . Th e figu r e  sh ows

that at 17 0. 2 the nonlinear theory assumptions are in good agreement with

the numerical  so lution . The dotted curve is s lig htly to the ri ght of th e loca t ion

where  a harmoni .~ cu rve would be upstream of R~ 
= 1. 7 x 10~ and th en shift s

abruptl y to the left d ownstream of that station . This phase behavior  is con-

sistent with Fig. 1 in which the bulge shifted f rom rig ht to left at R =

1. 7 x 10~~.

Figures 4, 5 and 6 show result s simila r to that presented in the f i r st

three fi g ures for  a hig her Reynold s number and a h ig i~er d imensionless  ( lower

dimensional) frequency with approximate ly the same amp litude of the Orr-

Sommerfe ld upstream boundary condition . Figure  4 demons t ra t e s  that t h e r e

is significant distort ion of the wa.ve due to nonl inear  ef fec ts , but in cont r ast to

Fi g. 1 the bulge is a lways to the left of the peak . Th e Fo u r i e r  amp litudes

a r e p lotted in Fig . 5; the second mode again has a re lative minimum but not

n e a r ly as d ramat ic as the one i n Fig. 2 . Finally, as expe cted f rom Fig .  4 ,

Fig . 6 shows no s igni f icant  var ia t ion in the relative phase.  From these  re-

sult s , ~t is conc luded that the f i r s t  set of solutions may be atyp ica l in that the

se cond mod e has a sha r p  minimum cor re lat ed with a phase shi f t ;  neve r the less .

th ese so lut io n s a re  more in te restin g p rec ise ly because of thi s unexpected be-

havior . Consequent ly, the remainder  of the pape r will be devoted to desc rib-

ing in de ta i l  the f i r s t  solution , with emp has i s  on the reg ion in th e f low i n

which it d i f f e r s  qual i ta t ive ly f r o m  both the second solution and non l inea r  sta-

bility theory .

— 1
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One obvious question raised by Fig . 2 is , Does the amp litude of the

second mode grow subsequent to R~ 
2 . 2 x 10~ or is there  another  mini-

mum? A calculation with a longer range in x has been comp leted , and the

results  in Fig . 7 show that the amp litude of th e se cond mode i n c r e a s e s

monotonically downstream of the minimum. It is also foune that there are

no fur ther  phase shifts;  the behavior  for  R > 1. 7 x l0~ in Figs. 1 and 3

persist s downstream at least to R = 2. 8 x 10~ .

The phase behavior at 77 = 0. 2 shown in Fig . 3 is , as was n oted , ver y

much as expected; the second tempora l  harmonic  is very  nea r ly a second

spatial harmonic.  Further stud y of the numer ica l  solutions has shown that

the result s i l lustrated in Fig . 3 are not typica l  of the whole boundary  laye r .

The solutions demonstrate that there is an anomalous region for 1.0 ~ 77~~ 1 .8

in the vicinity of R 1. 7 x 10
g

. The anomaly is i l lustrated in Fig s . 8 and 9.

Figure 8 is qualitative ly simila r to Fig. 3, althoug h the phase var ia t ion of the

secondary at 17 0 . 8 in the vicinity of R~ 
1. 74 x 1O 4 is more rap id than

elsewhere.  The phase plot at 77 1. 0 (Fig . 9) is quite d i f fe ren t ; one comp lete

oscillation cycle has disappeared and the secondary curve t r acks  the p r imary

curve in a reg ion near R 1. 7 x 10~~. This behavior , with one less oscilla-

t ion cycle than expected , is present  out to a value of 77 = 1. 8. At 77 = 2. 0 and

beyond , the behavior of the secondary is ag ain consistent with nonl inear  sta-

bility theory.

In order  to better cha rac te r i ze  the anomalous reg ion , it is u se fu l t o

look at the variat ion of the Fourie r amp li tude of the velocity ac ross  the bound-

a ry  layer. The behavior away f rom the reg ion of int e r e st is as shown in

Figs. 10 and 11 . In both these f igures , the shape of the secondary  is very

similar  to that of the p r i m a r y  except for  the fact that  the maximum and phase

r e v e r s a l  points are  c loser  to the wall in the case of the secondary .  As  the

f igures  show , this behavior  appears both ups t r eam and downstream of the

region with anomalous phase.

-18-
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The Four ier  amp lit udes of both the f i r s t  and second modes in the
5 . .v icini ty of R 1. 7 x 10 have been p lotted; there  is no s i g n i f i c a n t  varia-

t ion o f the f i r s t  mode in th is r eg ion , but the shape of the Four i e r  amp litude

of the second m ode varie s rap idl y with R in this reg ion . Figures  12 , 13

and 14 show the variat ion of the second mode prof i l e s  wit h R . The second

mode at R = 1. 62 x 10~ (Fi g. 12) has the typ ical  be havior  of the second mode

as shown in the Figs. 10 and 11 . Going do wns t ream , a third relat ive maxi-

mum deve lops between 17 of about one and two; at R = 1. 74 x 1O
5 (F ig. 13),

the at ypical s t ructure  is best deve loped . Downst ream of this station (Fi gs.
13 and 14), the addi t ional re lat ive maxi mum d i sappea r s, and the second mode

re turns  to its more usual shape . The third  maximum which appears  between

17 of about one and two is in the re g ion of anomalous phase behavior .

The preceding pa rag raphs have descr ibed an unexpected behavior of

the second harmonic .  Although the resul ts  have concentrated on the behavior

of the second a ry, the second mode is a forced mode; therefore , its behavior
should be dom in ated by the behavior of the p r imary .  With this in mind , the
behavior  of the p r imary  has been ca re fu l ly invest igated to see if the re is any
chan ge in charact er wh ic h could ex p lain the previous resul ts . A s noted , no
significant change in the Fourier  amp litude of the p r imary  has been f ound .
Howe ve r , the phase behavior is another matte r . Figure 15 shows a p lot of
the phase of f~ versus 77 at two Reynolds  numbers , one well ups t ream of the
re gion of interest  and one well downstream . (The phase has been arbit r a r i ly
set to zero at the wall to facili tate comparison of the two curves . )  At R

~ 
=

10~~, the phase f i r s t  rises to near ly ir/ 4 ; then in the “phase reversai region ”

the phase d e c r e a s e s  t o a va lue less th an -37r/4 . At R = 2 . 2 x 10 D
, the slope

of the phase change in the “phase r eve r sa l  region ” is changed to posi t ive ,
and the phase increases  f rom a nominal  7r/4 to 5 7r/ 4 (shown as -3,114 in the

figure). A lthough plots of Fourier amp litude suggest that there is a “phase

r e v e r s a l  poin t , “ curve s such as those in Fig. 15 show that in fact the phase

change occurs ove r a finite r egion and may have ei ther  a pos i t ive  or a nega-
t ive  s lope. These result s a re  consis tent  with so lu t ions  of the O r r - S o m m e r fe ld
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equat ion . In o r d e r  fo r  the ph ase r e v e r s a l  to occur  at a point , bot h the re~~l
a nd! imag i n a r y  p a r t s  of that  solut ion would ha”e to he zero at the same point .
This  is in g e n e r a l  not t r u e - - a  rapid phase  change does occur  in the vic in i ty

of the ze ro  of the rea l  pa rt because  the i m a g i n a r y  par t  is much s m a l l e r  than

the real  part . Solutions to the O r r - S omm e r fe ld equation demons t r a t e  that the

ou te rmos t  zero  of the imag i n a r y  par t  (of (!~~/d y) move s out with i n c r e a s i n g

Reyno lds  nu mber re la t ive  to the ze ro  of the real  part . When the zero  of the

imag ina r y part  is c loser  to the wall  than that of the real  pa r t , the phase

chang e has a ne g a t ive  slope (s imila r to Fig. 15 at R 10
D

)~ When the z e r o

of the imag ina ry  pa rt is outside that of the rea l  pa rt , the phase  chang e has a

positive slope.

Fi gure  15 shows that the phase behavior  of the p r i m a r y  mode changes
cha rac t er  in the solution region . A c a r e f u l inspec t ion  of cu rves  such as

those in Fig. 15 shows that in the pre  sent so lu t ion  the change in behav io r
oc cu r s  at R = 1.71 x 10

g
. This correlate s very  well  wi th  the locat ion of

the min imum amp li tude point of the second ha rmon ic  in Fi g. .~~. Because it is
be lieved that the p r i m a ry  must cont ro l  the se c o n d a r y  and because  the change
in the phase behavior  of the p r i m a r y  occurs  in the a n o m au ,u s  rc~~ion , it  i s

conc luded that this  phase behavior  causes the anomalous  behav io r  of t h e

secondary .

It should be noted that the flow reg ion wh ich is not in quaiit~tt ive ag ree-
meri t with nonl inear  stabil i ty theory  is loca lized! in both space di & ’n s ~ o n - .
The Reynolds  number  based on a T o l l mien - S c h l i c h t i n g  \ v a \ ( ~ l eng th  f o r  t h e

presen t  problem is about 2 x l0~~, and so the anomal y is c o n f i n e i t r u u ~~h lv

one wave le ngth . As noted , t he region  of inte rest  is a l so  con f ined  to v a lues
o f 77 between Ori C and two. This fact imp lie s that one-dimensional w av e

theories , such as nonlinear stability theory , cannot pre dict the details of

such regions in which  the wave phenomena  are  c l e a r ly  not o n e - d i m e n si o n a l .
The ex i s t ence  of such a reg ion co uld be p r ed i c t ed  by l inear  s tabi l i ty  t h e o ry
be cause the f i r s t  mode is r easonab ly wel l  modeled  by the l inear  t h e o r y .

S
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A possible criticism of the present results is that the upstream

boundary condition is somewhat a r t i f i c i a l . This is t rue  because a large

amp litude pure s inusoidal  d is turbance is imposed upstream . In any real
flow situation in which a large amp litude d i s turbance  deve loped eithe r f rom
being amp lified or f rom external  noise sources , the higher  modes wou ld be

present. On the other hand , the present  calculation is a well  defined and
re peatable method of learning about the nonl inear  flow behavior . It is also
reasonable to ass ume t hat far  anough downstream of the ups t ream boundary.
the details at that boundary are unimportant . It seems likel y that the
present  results are  not fa r  enoug h f rom the upstream boundary to be inde-
pendent of it , althoug h fur ther  numerical  studies are required to quantif y
this conjecture.  A f inal  point is that the result s presented here  i l lustrate  a
new and unex pected solut ion which may lead to a better understanding of
hig h Reynold s number flows , re ga rd l e s s  of how th ese fl ows are creat ed .

Anothe r question which should be addressed is , A re th e p rese nt resu l t s

r ea l or are they somehow caused by the numer ics?  There is no evide nce
that numer ica l  e r r o r s  have influenced the present  results . Refe rence 8
shows comparisons of various calculations which lend credence to the re-
sults. Subsequent to the publication of that paper , the longer s t reamwise
calculation shown in Fig. 7 was comp let ed . A com par i son  o f Figs . 3 and 7
i l lustrates the agreement  of these two calculations ove r the i r  common rang e
of validity . However , the nume rics do impose a limit on the amount of info r-
mation which can be extracted from the solution . In particula r , the phase
curve s (e .g . , Figs . 8 and 9) are obtained b y d iv id ing one component of th e
Fourier amp litude by it s absolute va lue , Whe n these numbers  are small ,
the resultant  phase curve s may be in e r ro r . Phase p lot s which attempt to
show the details  inte rmediate between Figs . 8 and 9 would possibly be in
e r r o r .  Howe ver , the amp litud e of the second mode is cer ta in ly large enoug h
to be meaning fu l at value s of 77 like 0 . 4 and 1. 5 (see Figs . 12 , 13 ari d 14).
At these va lues of 17, the phase behavior is simila r to that of Fi gs . 8 and 9.
Thus , it is concluded that the nume rics are accurate  enoug h to predict  the
pres ’~nce of the anomalous reg ion , but the detai ls  of the phase going f rom one
region to anothe r are uncer ta in .
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4. CONC LUDING REMARKS

The numerica l  results presented here in  provide insi ght into the be-

havior of nonlinear Tollmien-Schlichting waves.  Althoug h the solutions

are  qualitative ly simila r to those of nonlinear  stability theory  in most re-

gions , flows incompatible with one-dimensional  wave models are also found

t o exist . The details of the f irst  and second tempora l harmonics  are pre-

sented with an emphasis on the anomalous region . It is argued that the

f i rs t  harmonic drives the secondary and , the re fore , must control it every-

where. A change in the phase behavior of the pr imary occurs  in the

anomalous region , and it is sugg es ted th at t his chang e cau ses th e anomaly.
Because the f i rs t  mode is reasonably well modeled by linear  stabi lity theory ,

this theory may be used to predict the approximate location of the type of

anomalous region described he rein.
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